Examining the Auditors’ Acceptance of Big Data Analytics Technology Platform: Evidence from Government Auditors in Indonesia

Fauzan Wahyuabdi Pratama, Erna Fitri Komariyah

Abstract


This study examines the determinants of auditors’ acceptance of big data analytics (BDA) technology. Using the responses from 83 government auditors, we test the model built from the Unified Theory of Acceptance and Usage of Technology (UTAUT) theory and trust. The respondents are auditors who attended the BDA technology training session and have access to this technology. We utilize Structural Equation Modeling (SEM) as a data analytic method aided by SmartPLS 3 software. This study finds that three constructs in UTAUT, i.e., effort expectancy, performance expectancy, and facilitating condition, influence auditors' acceptance of BDA technology; meanwhile, one construct in UTAUT, social influence, does not influence auditors' acceptance of BDA technology. The additional construct, trust, also does not influence auditors’ acceptance of BDA technology. This study offers novelty to the literature in the context of BDA technology adoption as a current innovative technology in the auditing field. This study advises government audit agencies to develop technology that is easy to adopt, provides benefits of increased audit quality, and sufficient technical and infrastructure support.


Full Text:

PDF

References


Ahmi, A., & Kent, S. (2012). The utilization of generalized audit software (GAS) by external auditors. Managerial Auditing Journal, 28(2), 88–113. https://doi.org/10.1108/02686901311284522

Ahmi, A., Saidin, S. Z., & Abdullah, A. (2014). IT adoption by internal auditors in the public sector: A conceptual study. Procedia - Social and Behavioral Sciences, 164(August), 591–599. https://doi.org/10.1016/j.sbspro.2014.11.151

Ajzen, I. (1991). The Theory of Planned Behavior. Organization Behaviour and Human Decision Process, 50, 179–211. https://doi.org/10.4135/9781446249215.n22

Al-Hiyari, A., Said, N. Al, & Hattab, E. (2019). Factors That Influence The Use Of Computer Assisted Audit Techniques (CAATS) By Internal Auditors In Jordan. Academy of Accounting and Financial Studies Journal, 23(3), 1–15.

Al-Okaily, M., Alqudah, H. M., Al-Qudah, A. A., & Alkhwaldi, A. F. (2022). Examining the critical factors of computer-assisted audit tools and techniques adoption in the post-COVID-19 period : internal auditors perspective. VINE Journal of Information and Knowledge Management Systems. https://doi.org/10.1108/VJIKMS-12-2021-0311

Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002

Alkali, A. U., & Mansor, N. N. A. (2017). Interactivity and trust as antecedents of E-training use intention in Nigeria: A structural equation modeling approach. Behavioral Sciences, 7(3). https://doi.org/10.3390/bs7030047

Alles, M., Brennan, G., Kogan, A., & Vasarhelyi, M. A. (2006). Continuous monitoring of business process controls A pilot implementation of a continuous auditing system at Siemens. International Journal of Accounting Information Systems, 7, 137–161. https://doi.org/10.1016/j.accinf.2005.10.004

Appelbaum, D., Kogan, A., & Vasarhelyi, M. A. (2017). Big Data and Analytics in the Modern Audit Engagement: Research Needs. Auditing: A Journal of Practice and Theory, 36(4), 1–27. https://doi.org/10.2308/ajpt-51684

Bhattacharjee, A., & Harris, M. (2009). Individual adaptation of information technology. Journal of Computer Information Systems, 50(1), 37–45.

Bierstaker, J., Janvrin, D., & Lowe, D. J. (2014). What factors influence auditors’ use of computer-assisted audit techniques? Advances in Accounting, 30(1), 67–74. https://doi.org/10.1016/j.adiac.2013.12.005

Braun, R. L., & Davis, H. E. (2003). Computer-assisted audit tools and techniques: analysis and perspectives. Managerial Auditing Journal, 18(9), 725–731. https://doi.org/10.1108/02686900310500488

Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral Implications of Big Data’s Impact on Audit Judgment and Decision Making and Future Research Directions. Accounting Horizons, 29(2), 451–468. https://doi.org/10.2308/acch-51023

Brown-Liburd, H., & Vasarhelyi, M. A. (2015). Big Data and Audit Evidence. Journal of Emerging Technology in Accounting, 12(December), 1–16. https://doi.org/10.2308/jeta-10468

Cao, M., Chychyla, R., & Stewart, T. (2015). Big Data Analytics in Financial Statement Audits. Accounting Horizons, 29(2), 423–429. https://doi.org/10.2308/acch-51068

Chan, D. Y., & Vasarhelyi, M. A. (2011). International Journal of Accounting Information Systems Innovation and practice of continuous auditing. International Journal of Accounting Information Systems, 12(2), 152–160. https://doi.org/10.1016/j.accinf.2011.01.001

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publication, Inc.

Curtis, E., & Turley, S. (2007). The business risk audit – A longitudinal case study of an audit engagement. Accounting, Organizations and Society, 32(4–5), 439–461.

Curtis, M. B., & Payne, E. A. (2014). Modeling voluntary CAAT utilization decisions in auditing. Managerial Auditing Journal, 29(4), 304–326. https://doi.org/10.1108/MAJ-07-2013-0903

De Santis, F., & D’Onza, G. (2020). Big data and data analytics in auditing : in search of legitimacy. Meditari Accountancy Research. https://doi.org/10.1108/MEDAR-03-2020-0838

Debreceny, R., Lee, S. L., Neo, W., & Shuling Toh, J. (2005). Employing generalized audit software in the financial services sector: Challenges and opportunities. Managerial Auditing Journal, 20(6), 605–618. https://doi.org/10.1108/02686900510606092

EY. (2018). How big data and analytics are transforming the audit (pp. 1–5). EY.

Ferri, L., Spanò, R., Ginesti, G., & Theodosopoulos, G. (2020). Ascertaining auditors’ intentions to use blockchain technology: evidence from the Big 4 accountancy firms in Italy. Meditari Accountancy Research. https://doi.org/10.1108/MEDAR-03-2020-0829

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50.

Gartner. (2016). Big Data. https://www.gartner.com/en/information-technology/glossary/big-data

Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega, 28(6), 725–737. https://doi.org/10.1016/S0305-0483(00)00021-9

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in Online Shopping: An Integrated Model. MIS Quarterly, 27(1), 51–90.

Gonzalez, G. C., Sharma, P. N., & Galletta, D. F. (2012). Antecedents of the use of continuous auditing in the internal auditing context. International Journal of Accounting Information Systems, 13(3), 248–262. https://doi.org/10.1016/j.accinf.2012.06.009

Government of Indonesia. (2019). Peraturan Kementerian Dalam Negeri Nomor 70 Tahun 2019 tentang Sistem Informasi Pemerintahan Daerah.

Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004

Hair, Joe F, Sarstedt, M., Ringle, C. M., & Mena, J. A. (2011). An assessment of the use of partial least squares structural equation modeling in marketing research. J. of the Acad. Mark. Sci. https://doi.org/10.1007/s11747-011-0261-6

Hair, Joseph F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203

Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128

Handoko, B. L., & Liusman, S. (2021). Analysis of external auditor intentions in adopting artificial intelligence as fraud detection with the unified theory of acceptance and use of technology (UTAUT) approach. ACM International Conference Proceeding Series, 96–103. https://doi.org/10.1145/3481127.3481143

Institute of Internal Auditors. (2017). Global Technology Audit Guide Understanding and Auditing Big Data.

Intosai. (2022a). Development Overview of Big Data Audits Performed by Supreme Audit Institutions from 2016 to 2021. Intosai - Working Group on Big Data.

Intosai. (2022b). Research Paper on Innovative Audit Technology. Intosai - Working Group on Big Data.

Juniarti. (2001). Technology Acceptance Model (TAM) dan Theory of Planned Behavior (TPB), Apikasinya dalam Penggunaan Software Audit oleh Auditor. The Indonesian Journal of Accounting Research, 4(3).

Khoirunisa, K. R., jun, S., & BR, A. D. M. (2023). Expanding Technology Acceptance Model 3 Use Innovation Diffusion Theory on Accounting Learning During Pandemic : Insight from Indonesia. The Indonesian Journal Of Accounting Research, 26(1), 25–48. https://doi.org/10.33312/ijar.656

Mahzan, N., & Lymer, A. (2014). Examining the adoption of computer-assisted audit tools and techniques Cases of generalized audit software use. Managerial Auditing Journal, 29(4), 327–349. https://doi.org/10.1108/MAJ-05-2013-0877

Newton, J. D., & Ashton, R. H. (1989). The association between audit technology and audit delay. Auditing-a Journal of Practice & Theory, 8, 22–37.

Otia, J. E., & Bracci, E. (2022). Digital transformation and the public sector auditing: The SAI’s perspective. Financial Accountability and Management, 38(2), 252–280. https://doi.org/10.1111/faam.12317

Pedrosa, I., Costa, C. J., & Aparicio, M. (2020). Determinants adoption of computer‑assisted auditing tools (CAATs). Cognition, Technology & Work, 22, 565–583.

Power, M. K. (2003). Auditing and the production of legitimacy. Accounting, Organizations and Society, 28(4), 379–394.

Ratten, V. (2014). Behavioral intentions to adopt technological innovations: The role of trust, innovation, and performance. International Journal of Enterprise Information Systems, 10(3), 1–12. https://doi.org/10.4018/ijeis.2014070101

Razi, M. A., & Madani, H. H. (2013). An analysis of attributes that impact the adoption of audit software: An empirical study in Saudi Arabia. International Journal of Accounting and Information Management, 21(2), 170–188. https://doi.org/10.1108/18347641311312320

Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. Proceedings of the 2013 International Conference on Collaboration Technologies and Systems, CTS 2013, 42–47. https://doi.org/10.1109/CTS.2013.6567202

Salijeni, G., Samsonova-Taddei, A., & Turley, S. (2019). Big Data and changes in audit technology : contemplating a research agenda. Accounting and Business Research, 49(1), 95–119. https://doi.org/10.1080/00014788.2018.1459458

Sekaran, U., & Bougie, R. (2016). Research methods for business : a skill-building approach (7th ed.). John Wiley & Sons.

Smith, M. (2003). Research Methods in Accounting.

Steward, T. R. (2015). Data Analytics for Financial Statement Audits. In Audit Analytics and Continuous Audit Looking Toward the Future. American Institute of Certified Public Accountants, Inc.

Sudarto. (2019). Pengembangan Integrated Financial Management Information System (IFMIS) di Indonesia. Indonesian Treasury Review, 4(2), 87–103.

Susilo, G. F. A., Rani, U., & Khotijah, S. A. (2022). The Trusting Beliefs of Users and the Intention To Continue Making Purchases Via Social Commerce. Journal of Indonesian Economy and Business, 37(1), 1–14. https://doi.org/10.22146/jieb.v37i1.1402

Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 125–143.

Thottoli, M. M., Ahmed, E. R., & Thomas, K. V. (2022). Emerging technology and auditing practice : analysis for future directions. European Journal of Management Studies, 2635–2648. https://doi.org/10.1108/EJMS-06-2021-0058

Urbach, N., & Ahlemann, F. (2010). Structural Equation Modeling in Information Systems Research Using Partial Least Squares. Journal of Information Technology Theory and Application, 11(2), 5–40.

Vasarhelyi, M. A., & Romero, S. (2014). Technology in Audit Engagements : A Case Study. Managerial Auditing Journal, 29(4), 350–365. https://doi.org/10.1108/MAJ-06-2013-0881

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425–478.

Widuri, R., O’Connell, B., & Yapa, P. W. S. (2016). Adopting generalized audit software: an Indonesian perspective. Managerial Auditing Journal, 31(8–9), 821–847. https://doi.org/10.1108/MAJ-10-2015-1247

Yoon, K., Hoogduin, L., & Zhang, L. (2015). Big Data as Complementary Audit Evidence. 29(2), 431–438. https://doi.org/10.2308/acch-51076

Zhang, J., Yang, X., & Appelbaum, D. (2015). Toward effective big data analysis in continuous auditing. Accounting Horizons, 29(2), 469–476. https://doi.org/10.2308/acch-51070




DOI: http://doi.org/10.33312/ijar.714

Refbacks

  • There are currently no refbacks.


-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The Indonesian Journal of Accounting Research (IJAR)

Ikatan Akuntan Indonesia
Graha Akuntan, Jl. Sindanglaya No.1 Menteng, Jakarta Pusat 10310

Editorial Secretariat

CP : Farinza
Phone  : +62 812-2848-2829
Fax    : +62 274 524606
Website: http://ijar-iaikapd.or.id/
Email  : sekretariat@ijar-iaikapd.or.id

Marketing and Sales Office

CP : Reza Fauzi
Divisi Pelayanan, Keanggotaan dan Mitra IAI.
Grha Akuntan, Jl. Sindanglaya No.1, Menteng.
Telp.021-31904232 Ext.324/321

 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ISSN 2086-6887 (Print)
ISSN 2655 - 1748 (online)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------